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Creating Accurate Multivariate Rational Interpolation
Models of Microwave Circuits by Using Efficient
Adaptive Sampling to Minimize the Number of

Computational Electromagnetic Analyses
Robert Lehmensiek, Student Member, IEEE,and Petrie Meyer, Member, IEEE

Abstract—A fast and efficient adaptive sampling algorithm for
multivariate rational interpolation models based on convergents
of Thiele-type branched continued fractions (BCFs) is presented
in this paper. We propose a variation of the standard BCF that
uses approximation to establish a nonrectangular grid of support
points. Starting with a low-order interpolant, the technique sys-
tematically increases the order by optimally choosing new support
points in the areas of highest error until the required accuracy is
achieved. In this way, accurate surrogate models are established by
a small number of support points without anya priori knowledge of
the data. The technique is evaluated on several passive microwave
structures.

Index Terms—Computer-aided design, model-based parameter
estimation, multivariate adaptive sampling, multivariate rational
interpolation, surrogate modeling.

I. INTRODUCTION

M ICROWAVE design incorporating optimization, Monte
Carlo analysis, or statistical computer-aided design

relies on fast and accurate analyses or models of physical struc-
tures to be effective. Computational electromagnetic (CEM)
analysis techniques normally provide high accuracy at the
expense of computational effort, while circuit models, if they
exist, are computationally very effective, but lack wide-band
accuracy. Surrogate mathematical models, directly fitting data
from CEM simulations, offer fast and accurate solutions to this
problem, and are increasingly used in the design of microwave
components [1], [2]. Current models include lookup tables,
interpolation techniques, and artificial neural networks. Lookup
tables employ low-order polynomial interpolation between
entries in a multidimensional (normally uniform) grid [3]. They
require an exponentially increasing amount of storage space as
the dimension increases, and struggle to model nonlinearities.
Artificial neural networks can model highly nonlinear functions
with high dimensionality, but require networks with the right
topology, high numbers of training and testing examples, and
often excessive training times. They do, however, require only
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the coefficients of the network to be stored and, once trained,
are very fast to evaluate [4], [5]. Interpolation techniques
also require only storage of the interpolant coefficients and,
in addition, normally require the smallest amount of data to
establish a model [6]–[8]. Several authors have applied the
interpolation technique to the method of moments, for which
derivatives with respect to frequency can be calculated and
integrated into the interpolation model [9]–[11].

While polynomial interpolants are often used, rational
functions yield better results for functions containing poles or
for meromorphic functions. Polynomial interpolation is prone
to wild oscillations and an acceptable accuracy is sometimes
achieved only by polynomials of intolerably high degree [12],
[13]. A rational function can be constructed by calculating the
explicit solution of a system of interpolatory conditions, by
starting a recursive algorithm, or by calculating the conver-
gent of a continued fraction [14], [15]. The use of continued
fractions as interpolants is a computationally efficient method
[16] and gives accurate numerical results [17], [18]. Recursive
algorithms, on the other hand, are accurate, but determine
the value of the interpolant directly for a single value from
tabulated data without calculating the coefficients. Hence,
they become computationally inefficient for a large number
of function evaluations. This method was used in [19]. The
technique of solving a system of interpolatory conditions, while
used most often [9]–[11], [19]–[24], is generally accepted to be
the least accurate method.

The extension of univariate interpolation to multivariate
interpolation is not trivial since a large degree of freedom in
the choice for the numerator and denominator polynomials
exists. Only a few multivariate sampling algorithms have been
published. In [19], the authors use a rectangular grid of support
points and recursive univariate interpolation to establish the
multidimensional interpolation space. They also mention
establishing a multivariate function by solving a linear system
of equations. In [23], multivariate polynomials are used to build
a model for the geometrical parameters at a single frequency
and rational interpolation is used to combine these polynomials
to determine the entire interpolation space.

The orders of interpolants are generally determined heuristi-
cally or estimated [10], [20], [22]. With noa priori knowledge
of the problem, this can easily lead to overdetermined inter-
polants, requiring high numbers of support points. When CEM
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techniques are used for the generation of the support points, it
is of utmost importance to minimize the required number, espe-
cially in the multivariate case. This can only be achieved by the
use of adaptive sampling schemes, where the order of the func-
tion is gradually increased until a desired accuracy is reached.
In turn, this requires that a suitable error function exists and that
unequally spaced support points can be used [25]. Published
error functions include the difference between two interpolation
models that either use different data sample sets and/or are of
different rational polynomial orders [19], [20], [22], [23].

In this paper, a novel adaptive sampling algorithm for gen-
eral multivariate interpolation based on a Thiele-type branched
continued fraction (BCF) representation of a rational function
is presented. The proposed technique is based on a recently
published adaptive sampling algorithm for univariate interpo-
lation [26] and constructs sets of single-parameter interpolants
at optimal points in a ( )-variable space. Starting with
low-order interpolants, the technique systematically increases
the order by optimally choosing new support points in the areas
of highest error, until the required accuracy is achieved. The uni-
variate interpolants are, in turn, used to form bivariate, trivariate,
and finally -variable functions, establishing accurate surro-
gate models from a small number of support points. The stan-
dard BCF interpolation technique, which requires a fully filled
rectangular grid of support points, is adapted here to allow sam-
pling on a nonrectangular grid. Support points are, therefore,
placed optimally in the interpolation space with the result of a
reduction in the number of CEM analysis. The coefficients of
the rational interpolant and the evaluation of the function values
are determined in a recursive manner, making the adaptive algo-
rithm fast and efficient. An error estimate is obtained as a nat-
ural consequence of the recursion. Support points are selected
efficiently to create accurate surrogate models without oversam-
pling the interpolation space. The algorithm is fully automatic,
does not require derivatives, is widely applicable, and is in no
way restricted to the specific examples shown here. The accu-
racy of the technique, which depends on the number of support
points, is illustrated by two- and three-variable examples, with
errors of smaller than 0.25% being achieved in all cases. This
model accuracy is more than sufficient for the purposes of de-
signing most microwave circuits.

The multivariate interpolation used in this paper has, as
starting point, the more simple univariate rational interpolation.
In order to ease understanding of the former, both the formula-
tion of the interpolant and the adaptive sampling algorithm for
the univariate case will first be discussed briefly (see [26] and
[27] for details). The detailed expositions of the new algorithms
for the multivariate case, together with results, make up the
bulk of this paper.

II. UNIVARIATE RATIONAL INTERPOLATION

Rational interpolation defines an analytic functionof the
complex variable as a quotient of two polynomials and

(1)

with being the order of the numerator,being the order of the
denominator, and and being the polynomial coefficients.
The rational interpolant provides an approximation on an
interval of the function that we are trying to
model. Since there are unknown coefficients (
is chosen arbitrarily), a set of support
points ; , with and ,
are required to completely determine . is then a
curve passing through the ordinates at the abscissas
for . We assume exists and has no
unattainable support points [28]. A simple test can be added to
test for unattainable support points.

Equation (1) is represented by a convergent of a corre-
sponding Thiele continued fraction, as shown in (2). Each
rational expression is a th-order partial fraction
expansion of (1), together constituting a set of interpolants
that exhibit increasing accuracy as increases, reaching a
convergent value at .

(2)

The inverse differences are the partial denominators of
(2) and are essentially the coefficients that define . The
inverse differences are determined recursively from the support
points, defined in (3), shown at the bottom of this page [29].

The interpolation function can be evaluated nu-
merically with the three-term recurrence relations given in
(4) initialized with , ,

(3)
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, and
[30].

(4)

Recursive equations are also available for the deriva-
tive of with respect to . The computational effort
in determining the coefficients for

using the recurrence relations in (3) is
divisions and subtractions. To evaluate

or with the recurrence relations in (4) requires
multiplications, additions, and subtractions. In

total, to evaluate requires multiplications, one
division, additions, and subtractions.

III. U NIVARIATE ADAPTIVE SAMPLING

The determination of an accurate rational interpolant requires
that enough support points, in the case of microwave circuits,
normally CEM analyses, be used. In order to calculate the min-
imum number and the optimal positions of these support points,
an adaptive sampling algorithm for application to the rational
function approximation was proposed in [26], and briefly ex-
plained here for clarity. The technique has successfully been ap-
plied to various microwave problems [26], [27].

Starting with the rational interpolation formulation, a natural
residual term emerges as

which provides an estimate of the interpolation error. This is the
relative squared error between the current estimate of the inter-
polant and the previous estimate of the interpolant, i.e., before
adding the last support point. The adaptive algorithm is defined
to work in the interval . As a first step, an arbitrary
third support point is selected, which lies in the interval

. The values for at these points are determined by
CEM analysis. The residual is now evaluated at a large
number of equispaced sample points in the interval .
The interval , i.e., the interval in which the last sup-
port point was placed, is ignored, as it does not provide a suit-
able error estimate. At the maximum of the evaluated sample
points, a new support point is selected, thereby minimizing
the residual. The process is repeated until the residual becomes
arbitrarily small. It is important to note that, for a full iteration,
only one point is determined via a CEM analysis. As all the
other computation steps only require the evaluation of the in-
terpolation function, the computational effort is decreased sub-

Fig. 1. Illustration of the adaptive sampling technique. The interpolation
functions< (
), < (
), and the residualE (
) are shown. The asterisk
indicates the new sample point.

stantially. Fig. 1 shows a step in the execution of the algorithm,
with the new sample point indicated with an asterisk.

The adaptive sampling algorithm automatically selects and
minimizes the number of support points, and it does not require
anya priori knowledge of the dynamics of the function in order
to define an interpolation model . The following important
points should be noted.

1) The number of equispaced evaluations of the residual is
not crucial as long as it is of an order larger than the
number of support points.

2) For highly nonlinear functions, the number of support
points can become large, causing the order of the rational
polynomial to become large and the algorithm to become
numerically unstable. To prevent this, the interval is sub-
divided when reaches its critical value [27].

3) As a consequence of the continued fraction formulation
for even and for odd and

.
4) Equiripple error can only be achieved if the function is

known, in which case, economization [13] or, specifically,
a Remes-type algorithm [31] can be used.

5) As the accuracy of the interpolant is required to increase,
the accuracy of the CEM analysis technique needs to in-
crease. Otherwise, the interpolation process will try to
model the error of the CEM analysis because it deter-
mines an interpolant and not an approximant, and this will
lead to an excessive number of support points being se-
lected.

IV. M ULTIVARIATE RATIONAL INTERPOLATION

The multivariate rational function is defined in (5), where
with represents the complex vari-

ables. The interpolation function will
be equal to the function , which we are
trying to model, at the support points and will approximate

between the support points. A set of
support points required to determine are
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represented by ; , where
, , and

. For the moment, we assume that
the support points are placed on a fully filled not necessarily
equidistant rectangular grid and, therefore, the full set is given
by the Cartesian product of the support points for each variable,
i.e.,

We will use a method analogous to the univariate case for deter-
mination and evaluation of the multivariate rational interpolant.
The generic equations for our multivariate rational interpolation
technique are given in the following paragraphs.

(5)

The interpolation function is represented by
the convergent of a multivariate Thiele-type BCF of the form

(6)

Compared to the univariate continued fraction in (2), each
of the constant partial denominators is replaced with a mul-
tivariate function , which has one
less variable than and is defined with
constant and equal to . Each
can, in turn, be represented by a continued fraction, where

is defined at and
:

(7)

The substitution of the partial denominators by continued
fractions is repeatedly performed according to (8). The
number of variables of

decreases with every step until this function be-
comes a univariate function ,

in which case, (3) is used to determine the coefficients and (4)
is used to evaluate .

(8)

The computation of the above multivariate continued fraction
follows a tree-like structure and is, therefore, called a BCF. Dif-
ferent forms of BCFs can be constructed, depending on the way
in which the list of support points is enumerated [32]–[34]. The
BCF used here was defined by Siemaszko [35].

Similar to the univariate case, each of the BCFs of (6)–(8)
can be evaluated by using three-term recurrence relations given
in (9) for , initialized with

and
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(9)

In this case, sets of support points are combined to define
sets of univariate interpolation functions with variables
constant. The union of these univariate interpolation functions
then generates sets of bivariate functions. Sets of bivariate func-
tions combine to form three-variable interpolation functions.
The process is repeated until a multivariate interpolation func-
tion with variables is determined.

From the above formulation, it follows that the determination
of the coefficients for the multivariate interpolant is equivalent
to the determination of coefficients for a set of univariate func-
tions. These univariate functions are determined by repeatedly
applying the set of recurrence relations given in (10), shown at
the bottom of this page, for . Then,

(11)

Note that the evaluation of (10) requires all the support points
in

, as assumed at the beginning of this
section. This constriction of a rectangular grid of support points,
which is an inherent characteristic of BCFs, is not suited for an
adaptive sampling algorithm that requires the freedom to choose
arbitrary support points in the interpolation space. Furthermore,
we expect that a number of the support points in the grid are
redundant.

An important step to enable an adaptive scheme to be applied
can now be taken. The constriction of the rectangular grid is
removed by approximating certain function values with the
previously determined interpolants for those functions when

evaluating ; .
Equation (10), for , therefore, becomes
(12), shown at the bottom of the following page, and (11)
becomes

(13)

This simple procedure makes a world of difference, as the
rectangularly spaced support points required by the BCF can
now effectively be calculated from nonrectangularly spaced
support points. The following important points should be noted.

1) Since the number of support points for each univariate
function may be different according to (12), the orders of
the BCFs, , for , are now functions of
their positions, i.e., , and for implementa-
tion, (7)–(9) and (12) need to be adapted.

2) Since each multivariate interpolant is the construct of a
set of lower dimensional interpolants, it is important to
ensure that the accuracy of these lower dimensional in-
terpolants increases as the number of variables decreases.

3) The degree sets of the numerator and the denominator
polynomials are completely determined by the form of
the BCF, which, in turn, is determined by the structure of
the support points.

4) Different numberings of the support points produces dif-
ferent interpolants with dissimilar accuracies [17]. Inter-
polants are more accurate when the support points are
renumbered so that the orders of the BCFs decrease for
increasing branches of the BCF.

V. MULTIVARIATE ADAPTIVE SAMPLING

The multivariate rational interpolation formulation given in
Section IV is essentially univariate in nature. Therefore, we

(10)
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can apply an adaptive sampling algorithm similar to that used
for the univariate case. Two different adaptive sampling algo-
rithms are considered. The first algorithm, based on (10) and
(11), determines a set of support points in the interpolation
space placed on a fully filled (not equidistant) rectangular grid.
The second algorithm places support points on a nonrectan-
gular grid and is based on (12) and (13). The interpolation
space is defined in for . At
initialization, an arbitrary set of points are selected in the
interval .

An estimate of the interpolation error for the partial inter-
polants of (8) is given in (14), shown at the bottom of this page.
The function
is only defined for the variable , with
defining the position at which the error function can be
evaluated. To reduce the computational effort required
in evaluating (14), especially for a larger number of
variables,

is only evaluated at ,

. Practical examples have shown that
is largely in-

dependent of the variables , provided
that is accurate
for all . Due to the renumbering of the support points, as
mentioned in Section IV, it is necessary that an error function
be zero at all of the support points in order to be able to place

a new support point at the maximum of this error function.
Evaluation of the error function in (14), with the support points
in the series , will determine a function
that is zero at all of the support points, except at . A
different error function can be defined, which is zero at all of
the support points, except at , when the last two support
points in the series are swapped around. A new error function,
defined as the product of the square root of the above two error
functions, is zero at all of the support points. Although the
same method can be applied to the univariate case, this has no
benefit.

The first multivariate adaptive sampling algorithm, denoted
ASA1, determines the multivariate rational interpolant as shown
in the following steps.

Step 1) Using the univariate adaptive sampling algorithm,
determine a univariate model of each variable
over the interval , with all other variables
set to their midpoint values, i.e.,

for and . In this
way, univariate interpolants and their respective
sets of support points, each lying on a line crossing
through the center of the interpolation space, are de-
termined.

Step 2) Sort the variable positions in the multivariate inter-
polant so that the orders of the interpolants de-
termined in step 1) decrease asincreases in (8).

(12)

(14)
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Fig. 2. Illustration of the support point placement using ASA1.

Step 3) Generate a rectangular grid of support points from
the points determined in step 1), i.e., all the points in

.
Step 4) Determine a multivariate rational interpolant from

the grid of support points defined in step 3) using
(10), (11), and (3).

We expound ASA1 by means of a bivariate example illus-
trated in Fig. 2. Step 1) of the algorithm determines the star-
shaped support points by means of a univariate interpolation
along the dimensions and at and , respectively.
Since is smaller than in the example,
and are exchanged in the interpolant. Hence, the interpolant

consists of a union of univariate interpolants .
In step 3), a grid of support points is generated by adding the
circle-shaped support points, as shown in Fig. 2. is
determined from this rectangular grid of support points.

The second multivariate adaptive sampling algorithm,
denoted ASA2, determines the multivariate rational interpolant
as shown in the following steps.

Step 1) Same as for ASA1.
Step 2) Same as for ASA1.
Step 3) Initialize a model with a rectangular grid of sup-

port points with three support points along every
dimension, i.e., support points in

.
Step 4) Determine a multivariate rational interpolant from

the support points using (12), (13), and (3).
Step 5) Select a dimension for selection of new support

points. Iterate for .
Step 6) Select a new support point at the maximum of the

error function at .
Step 7) Renumber the support points so thatdecreases as

increases.
Step 8) Repeat steps 4)–8) until convergence.
We expound ASA2 by means of a bivariate example illus-

trated in Fig. 3. Steps 1) and 2) are the same as in ASA1. We
assume is smaller than . In step 3), an initialization grid
of nine support points is generated, as shown by the star-shaped
support points in Fig. 3(a). is determined from these
nine support points. Using the univariate adaptive sampling al-

(a)

(b)

Fig. 3. Illustration of the support point placement using ASA2. (a) After three
steps. (b) After the fourth step.

gorithm, we completely determine with a predetermined
accuracy by placing support points at . We then determine

at . Since is bigger than , we
continue by determining at . With , we
renumber the support points so that the support points at
determine , the support points at determine ,
the support points at determine in (6) and, hence,

, , and become , , and , respectively, as
shown in Fig. 3(b). We then evaluate the error function forat

and determine at the maximum of this error. We ini-
tialize with three support points at , and ,
shown by the star-shaped support points in Fig. 3(b). Using the
univariate adaptive sampling algorithm, we completely deter-
mine at . The process is repeated until the error func-
tion has reached its predetermined accuracy.

If required, interval subdivision, as mentioned in Section III
for the univariate case, is applied to the variable.

VI. EXAMPLES

To verify the algorithms discussed in Sections IV and V, a
number of two- and three-dimensional models were created for
standard microwave circuits. To determine the accuracy of the
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TABLE I
CONVERGENCE OF<(w/h; " ) DETERMINED BY ASA1 AND ASA2 FOR THESTRIPLINE EXAMPLE

Fig. 4. Cross-sectional view of the stripline.

models, they have to be evaluated on an independent evaluation
data set, similar to the validation procedures applied to neural
networks. In the following examples, the relative squared error

between the function and the model on a 30equispaced
grid for the bivariate cases and on a 20equispaced grid for the
trivariate cases was calculated. In all cases, both the maximum
and average errors in decibels are shown for models of varying
size. None of these models were reduced in size after a fit was
obtained, in contrast to techniques where the order of the in-
terpolant is guessed beforehand, and the interpolation function
(calculated by a high number of CEM analyses) is systemati-
cally reduced afterwards.

A. Stripline Characteristic Impedance—Two Variables

A bivariate model w/h was determined with the
adaptive sampling algorithm for the characteristic impedance

w/h of a homogeneous symmetric stripline, as shown
in Fig. 4. The variables are the strip width-to-height (w/h)
ratio and the relative dielectric constant of the substrate.
The strip conductor was assumed infinitesimally thin, thus

w/h can be computed using the exact formula, which
is derived using a conformal transformation [36]. The model is
determined for the parameters w/h and ,
which define the interpolation space. At initialization, the nine
chosen support points producew/h with the maximum
error equal to 16.4 dB. Table I shows the convergence of the
models using ASA1 and ASA2 as the number of support points
increase. With equivalent accuracies (57 dB), the model
determined by ASA2 required seven less support points than
ASA1. The response of the interpolation modelw/h
with 29 support points determined with ASA2 and its relative
squared error w/h , which is less than 56 dB in the
interpolation space, are shown in Figs. 5 and 6, respectively.

B. Capacitive Step in Rectangular Waveguide—Two Variables

Bivariate models and , and
and , were determined for the reflection and transmis-

Fig. 5. ASA2: stripline example. Response of<(w/h; " ) with 29 support
points.

Fig. 6. ASA2: stripline example.E (w/h; " ) of<(w/h; " ) with 29 support
points.

sion coefficients, i.e., and , and
and , of a capacitive step in a rectangular waveguide, as
shown in Fig. 7. The variables are frequencyand gap height ,
and frequency and gap length. The models were determined
for a standard WR90 rectangular waveguide. The capacitive step
was analyzed using the mode-matching method combined with
the generalized scattering matrix [37]. The models
and are determined with GHz GHz ,

mm mm and mm. Tables II and III show the con-
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TABLE II
CONVERGENCE OF< (f; h) DETERMINED BY ASA1 AND ASA2 FOR THECAPACITIVE STEP EXAMPLE

TABLE III
CONVERGENCE OF< (f; h) DETERMINED BY ASA1 AND ASA2 FOR THECAPACITIVE STEP EXAMPLE

TABLE IV
CONVERGENCE OF< (f; l) AND < (f; l) DETERMINED BY ASA2 FOR THECAPACITIVE STEP EXAMPLE

Fig. 7. Cross-sectional view and side view of the capacitive step.

vergence of the models using ASA1 and ASA2 as the number of
support points increase. The models and are
determined with GHz GHz , mm mm
and mm. Table IV shows the convergence of the models
using ASA2 as the number of support points increase. With an
equivalent number of support points, the errors of the models
determined by ASA2 tend to be less by up to 10 dB compared
to those determined by ASA1.

C. Inductive Posts in Rectangular Waveguide—Two Variables

Bivariate models and were determined
for the reflection and transmission coefficients, i.e.,
and , of two perfectly conducting round posts cen-
tered in the -plane of a rectangular waveguide, as shown in
Fig. 8. The variables are frequencyand post-spacing . The
diameter of the postswas set to 2 mm and the model was de-

Fig. 8. Cross-sectional view and top view of the inductive posts.

termined for a standard WR90 rectangular waveguide with
GHz GHz and mm mm . A moment-method

technique is used to analyze this structure [38]. Tables V and VI
show the convergence of the models and
using ASA1 and ASA2 as the number of support points increase.

D. Capacitive Step in Rectangular Waveguide—Three
Variables

A trivariate model was determined for the re-
flection coefficient, i.e., of a capacitive step in a
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TABLE V
CONVERGENCE OF< (f; w) DETERMINED BY ASA1 AND ASA2 FOR THEINDUCTIVE POSTSEXAMPLE

TABLE VI
CONVERGENCE OF< (f; w) DETERMINED BY ASA1 AND ASA2 FOR THEINDUCTIVE POSTSEXAMPLE

TABLE VII
CONVERGENCE OF< (f; h; l) DETERMINED BY ASA1 FOR THECAPACITIVE STEP EXAMPLE

TABLE VIII
CONVERGENCE OF< (f; h; l) DETERMINED BY ASA2 FOR THECAPACITIVE STEP EXAMPLE

rectangular waveguide, as shown in Fig. 7. The variables are
frequency , gap height , and step length. The model was de-
termined for a standard WR90 rectangular waveguide. The ca-
pacitive step is analyzed using the mode-matching method [37].
Two sets of models were determined with different interpolation
spaces, i.e., GHz GHz , mm mm , and

mm mm , and GHz GHz , mm mm ,
and mm mm . Tables VII and VIII show the results
using ASA1 and ASA2, respectively. For the smaller interpola-
tion space, the models determined by ASA1 and ASA2 attain an
error smaller than 95 dB with about 920 support points. ASA2

has a faster convergence than ASA1. For the larger interpolation
space, ASA1 failed to produce a model with good accuracy due
to the nonoptimal placement of the support points, while ASA2
achieved an error of smaller than58 dB with 2142 support
points.

E. Iris in Rectangular Waveguide—Three Variables

A trivariate model was determined for the
transmission coefficient, i.e., of an iris in a
rectangular waveguide, as shown in Fig. 9. The variables
are frequency , gap width , and gap height . The model
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Fig. 9. Iris in rectangular waveguide.

TABLE IX
CONVERGENCE OF< (f; a; b) DETERMINED BY ASA1 FOR THE

IRIS EXAMPLE

TABLE X
CONVERGENCE OF< (f; a; b) DETERMINED BY ASA2 FOR THE

IRIS EXAMPLE

was determined for a standard WR90 rectangular wave-
guide with GHz GHz , mm mm ,

mm mm , and mm. The iris is analyzed using
the mode-matching method [37]. Tables IX and X show the
results using ASA1 and ASA2. ASA1 failed to produce a
model with good accuracy due to the nonoptimal placement of
the support points, while ASA2 achieved an error of smaller
than 52 dB with 736 support points.

VII. CONCLUSION

An adaptive sampling algorithm for multivariate rational in-
terpolation based on the Thiele-type BCF has been presented.
Support points have been selected efficiently to create accu-
rate mathematical models for the microwave circuits consid-
ered. Errors of smaller than 0.25% in the interpolation space
were achieved in all cases. The algorithm is fully automatic and
does not require anya priori knowledge of the microwave struc-
ture under study. It does not require derivatives, is widely appli-
cable, and is in no way restricted to the specific examples shown
here.
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