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Creating Accurate Multivariate Rational Interpolation
Models of Microwave Circuits by Using Efficient
Adaptive Sampling to Minimize the Number of
Computational Electromagnetic Analyses

Robert LehmensiekStudent Member, IEEEBNd Petrie MeyerMember, IEEE

Abstract—A fast and efficient adaptive sampling algorithm for  the coefficients of the network to be stored and, once trained,
multivariate rational interpolation models based on convergents are very fast to evaluate [4], [5]. Interpolation techniques
of Thiele-type branched continued fractions (BCFs) is presented 454 require only storage of the interpolant coefficients and,

in this paper. We propose a variation of the standard BCF that . dditi I ire th llest t of data t
uses approximation to establish a nonrectangular grid of support in-addidon, normaily’ require the smallest amolnt of daia 1o

points. Starting with a low-order interpolant, the technique sys- €stablish a model [6]-[8]. Several authors have applied the
tematically increases the order by optimally choosing new support interpolation technique to the method of moments, for which

points in the areas of highest error until the required accuracy is  derivatives with respect to frequency can be calculated and
achieved. In this way, accurate surrogate models are established byintegrated into the interpolation model [9]-[11].

a small number of support points without anya priori knowledge of Whil | ial it lant ft d " |
the data. The technique is evaluated on several passive microwave, ‘' '€ Polynomial interpolants -are -olten used, rationa
structures. functions yield better results for functions containing poles or

. . for meromorphic functions. Polynomial interpolation is prone
Index Terms—Computer-aided design, model-based parameter . S . .
estimation, multivariate adaptive sampling, multivariate rational 1 Wild oscillations and an acceptable accuracy is sometimes
interpolation, surrogate modeling. achieved only by polynomials of intolerably high degree [12],
[13]. A rational function can be constructed by calculating the
explicit solution of a system of interpolatory conditions, by
starting a recursive algorithm, or by calculating the conver-
ICROWAVE design incorporating optimization, Montegent of a continued fraction [14], [15]. The use of continued
Carlo analysis, or statistical computer-aided desidractions as interpolants is a computationally efficient method
relies on fast and accurate analyses or models of physical stiidé] and gives accurate numerical results [17], [18]. Recursive
tures to be effective. Computational electromagnetic (CEN&Jgorithms, on the other hand, are accurate, but determine
analysis technigques normally provide high accuracy at tiiee value of the interpolant directly for a single value from
expense of computational effort, while circuit models, if thefabulated data without calculating the coefficients. Hence,
exist, are computationally very effective, but lack wide-bandhey become computationally inefficient for a large number
accuracy. Surrogate mathematical models, directly fitting daeé function evaluations. This method was used in [19]. The
from CEM simulations, offer fast and accurate solutions to thiechnique of solving a system of interpolatory conditions, while
problem, and are increasingly used in the design of microwaveed most often [9]-[11], [19]-[24], is generally accepted to be
components [1], [2]. Current models include lookup table#e least accurate method.
interpolation techniques, and artificial neural networks. Lookup The extension of univariate interpolation to multivariate
tables employ low-order polynomial interpolation betweeiterpolation is not trivial since a large degree of freedom in
entries in a multidimensional (normally uniform) grid [3]. Theythe choice for the numerator and denominator polynomials
require an exponentially increasing amount of storage spacegaists. Only a few multivariate sampling algorithms have been
the dimension increases, and struggle to model nonlinearitipgblished. In [19], the authors use a rectangular grid of support
Avrtificial neural networks can model highly nonlinear functiongoints and recursive univariate interpolation to establish the
with high dimensionality, but require networks with the righmultidimensional interpolation space. They also mention
topology, high numbers of training and testing examples, aggtablishing a multivariate function by solving a linear system
often excessive training times. They do, however, require or¥equations. In [23], multivariate polynomials are used to build
a model for the geometrical parameters at a single frequency
. . and rational interpolation is used to combine these polynomials
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techniques are used for the generation of the support points, it Il. UNIVARIATE RATIONAL INTERPOLATION
is of utmost importance to minimize the required number, espe-
cially in the multivariate case. This can only be achieved by tf& mplex variabley as a quotient of two polynomials;(v) and
use of adaptive sampling schemes, where the order of the fu%: ()

tion is gradually increased until a desired accuracy is reached. i

In turn, this requires that a suitable error function exists and that

Rational interpolation defines an analytic functiinof the

unequally spaced support points can be used [25]. Published mek

error functions include the difference between two interpolation R(y) = Ne(v) = k=0 1)
models that either use different data sample sets and/or are of Dy(v) - ‘

different rational polynomial orders [19], [20], [22], [23]. Z £

In this paper, a novel adaptive sampling algorithm for gen-
eral multivariate interpolation based on a Thiele-type branchwith ¢ being the order of the numeraterbeing the order of the
continued fraction (BCF) representation of a rational functiotlenominator, ang; andg; being the polynomial coefficients.
is presented. The proposed technique is based on a receftig rational interpolanft provides an approximation on an
published adaptive sampling algorithm for univariate interpdaterval [v(%), ()] of the functionS(v) that we are trying to
lation [26] and constructs sets of single-parameter interpolamt@del. Since there ar¢ + » 4+ 1 unknown coefficients ¢
at optimal points in alp — 1)-variable space. Starting withis chosen arbitrarily), a set a¥ + 1 = ¢ + v + 1 support
low-order interpolants, the technique systematically increagegints (v(¥; S;), withi = 0,1, ..., N andS; = S(y®),
the order by optimally choosing new support points in the areate required to completely determii®(y). R(v) is then a
of highest error, until the required accuracy is achieved. The ugidrve passing through the ordinatés at the abscissas®
variate interpolants are, in turn, used to form bivariate, trivariat®r < = 0,1, ..., N. We assumeR(y) exists and has no
and finally D-variable functions, establishing accurate surrasnattainable support points [28]. A simple test can be added to
gate models from a small number of support points. The stdest for unattainable support points.
dard BCF interpolation technique, which requires a fully filled Equation (1) is represented by a convergent of a corre-
rectangular grid of support points, is adapted here to allow sagponding Thiele continued fraction, as shown in (2). Each
pling on a nonrectangular grid. Support points are, thereforafional expression,(v) is a kth-order partial fraction
placed optimally in the interpolation space with the result of @pansion of (1), together constituting a set of interpolants
reduction in the number of CEM analysis. The coefficients dhat exhibit increasing accuracy &sincreases, reaching a
the rational interpolant and the evaluation of the function valuesnvergent value & = N.
are determined in a recursive manner, making the adaptive algg-
rithm fast and efficient. An error estimate is obtained as a nzglﬁk(’y)
ural consequence of the recursion. Support points are selectgds0 1 St
efficiently to create accurate surrogate models without oversam- 1) ~(0) v — M
pling the interpolation space. The algorithm is fully automatic, 1 (D, 7) @ (1) )
does not require derivatives, is widely applicable, and is in no (’y R )+
way restricted to the specific examples shown here. The accu- N v — k=1
racy of the technique, which depends on the number of support on (Y®) =D)LL (0
points, is illustrated by two- and three-variable examples, with ‘ -1
errors of smaller than 0.25% being achieved in all cases. This So 4 Z 77 ’
rr_lod_el accuracy is more than .sufficient for the purposes of de- P ‘ ©; (,y(z) AG=D ,y(o))
signing most microwave circuits. k=01, ... N. )

The multivariate interpolation used in this paper has, as
starting point, the more simple univariate rational interpolation. The inverse differenceg, are the partial denominators of
In order to ease understanding of the former, both the formul@) and are essentially the coefficients that defityg~). The
tion of the interpolant and the adaptive sampling algorithm famverse differences are determined recursively from the support
the univariate case will first be discussed briefly (see [26] ammbints, defined in (3), shown at the bottom of this page [29].
[27] for details). The detailed expositions of the new algorithms The interpolation function®(v) can be evaluated nu-
for the multivariate case, together with results, make up tineerically with the three-term recurrence relations given in

7

bulk of this paper. (4) initialized with No(v) = So, Do(y) = 1, Ni(y) =
(i) — ~(0)
i _7 Y .
‘Pl('y()"y(o)):is_so , i=1,2,...,N
() _ (k=1
() (=1) ) = AR i= ko k .
Pr\T Y goeeey Y — Fl - - - 3 t =K, —’-].,...,.ZV7
k( ) <Pk—1(’7()77(k 2)7"'77(0)) - <Pk—1(’Y(k 1)77(k 2)7"'77(0))

k=23 .., N. ©)
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e1(YV, A NNo(y) + (v = +), and Di(y) = o1(vW,
~@) [30]. s,
E
Ni(7) = o (’7("‘), =D ’7(0)) 5 s,
s
N1 (7) + (v = Y F ) Nie—a () ‘;’i ’
Di(7) = o (’7(’“), AT ’Y(O)) ’ e
2
“Dy—1(v) + (’V - ’V(kfl))Dk—2(’Y)
k=23 ...,N
Ni()
Re(v) = , E=0,1,..., N. 4) -
G ]
53]
Recursive equations are also available for the deriva . ) )
tive of R(y) with respect toy. The computational effort P ) M A
. NI . . y-axis
in determining the coefficientsps (v, v4—1, ---, 7o) for
k= 1,2,..., N using the recurrence relations in (3) iSsig. 1. Illustration of the adaptive sampling technique. The interpolation

N(N +1)/2divisions andV (N + 1) subtractions. To evaluate functions R3(), R4(7), and the residuaF.(+) are shown. The asterisk
Nx(v) or Dx(v) with the recurrence relations in (4) requireddicates the new sample point.

2N — 1 multiplications, NV additions, andV subtractions. In

total, to evaluatéR v () requires4N — 2 multiplications, one stantially. Fig. 1 shows a step in the execution of the algorithm,

division, 2N additions, an@®N subtractions. with the new sample point indicated with an asterisk.
The adaptive sampling algorithm automatically selects and
ll. UNIVARIATE ADAPTIVE SAMPLING minimizes the number of support points, and it does not require

anya priori knowledge of the dynamics of the function in order

The determination of an accurate rational interpolant requir@sgefine an interpolation mod#(~). The following important
that enough support points, in the case of microwave circui}%ints should be noted.

normally CEM analyses, be used. In order to calculate the min-

imum numberand Fhe optlm_al positions O_f thv_ase support p_omts, not crucial as long as it is of an order larger than the
an adaptive sampling algorithm for application to the rational number of support points

function approximation was proposed in [26], and briefly €x- 5y o highly nonlinear functions, the number of support
plained here for clarity. The technique has successfully been ap-
plied to various microwave problems [26], [27].

Starting with the rational interpolation formulation, a natural
residual term emerges as

1) The number of equispaced evaluations of the residual is

points can become large, causing the order of the rational
polynomial to become large and the algorithm to become
numerically unstable. To prevent this, the interval is sub-

divided whenN reaches its critical value [27].

3) As a consequence of the continued fraction formulation

R R 2
Ei(y) = [Re () = Rr—1(7)| for k even¢ = v = k/2 and fork odd¢ = (k+1)/2 and
(v) = 5 biad
(1+ 3] v == 1)/2 . -
4) Equiripple error can only be achieved if the function is

which provides an estimate of the interpolation error. This is the ;nlgévr:’elg-\t,vhIggfasri’h?cigg]n::l ;ﬁtg)g L[Jlsi] dor, specifically,
relative squared error between the current estimate of the inter- ype aig : . - .

. : . . 5) As the accuracy of the interpolant is required to increase,
polant and the previous estimate of the interpolant, i.e., before

adding the last support point. The adaptive algorithm is defined Er;g;cecugﬁ)g:)f .tshee ?himnigfl}j:t.;enm?gllz:ee.ﬁlstrto :g
to work in the interval+(?), v(1)]. As a first step, an arbitrary ' wise, interpolation p Wit try

third support pointy(? is selected, which lies in the interval model the errorlof thedCEM anaIyS|s_becausednh(jete.r”-
[v(©, 4(]. The values folS;, at these points are determined by :”mndef aninterpo a_nt an ngt an fapproxw;mnp ::m bt NS Wi
CEM analysis. The residud, () is now evaluated at a large Iea do an excessive numboer of support paints being se-
number of equispaced sample points in the intefy@, +2)]. ected.

The interval[y?, 41, i.e., the interval in which the last sup-
port point was placed, is ignored, as it does not provide a suit-
able error estimate. At the maximum of the evaluated sampleThe multivariate rational function is defined in (5), where
points, a new support point® is selected, thereby minimizing v with d = 1,2, ..., D represents thé) complex vari-
the residual. The process is repeated until the residual becoraktes. The interpolation functiof(y1, v2, ..., yp) Wil
arbitrarily small. It is important to note that, for a full iterationbe equal to the functiorb(v:, 2, ..., vp), which we are
only one point is determined via a CEM analysis. As all theeying to model, at the support points and will approximate
other computation steps only require the evaluation of the if{~, vz, ..., vp) between the support points. A set of
terpolation function, the computational effort is decreased sutupport points required to determifi®~i, vz, ..., yp) are

IV. MULTIVARIATE RATIONAL INTERPOLATION
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represented b)(’y(“), (12), ceey 7,(3”3), Si. i, ...in), Where inwhich case, (3) is used to determine the coefficients and (4)
ia = 0,1,...,Ng, d = 1,2, D,andS;, ;, i, = isusedto evaluatﬁu(fynh(“), 7522), s 7,(3”311)).
S(fyjf“), 7522), . 7,(3”3)) For the moment, we assume that
the support points are placed on a fully filled not necessarg%‘ ‘ (1) (i) (ig_1)
equidistant rectangular grid and, therefore, the full set is giverf<— Vo VA1 - ADITL 0 V2 0o oo a1
by the Cartesian product of the support points for each variable,
i % % 0
€., = §R0<7d+la Yd+25 + -+ ’YD"Y( l)a r}é 2)a [RRE ,7((1 ) )
0 1 N 0 1 N, i
{,yp’,yp’___’,ﬁ n}x{ © A0 2>} N g — A |
© (1) (Np) +2 i i )
X - {’YD s IYD 7"'7’7DD } Zd_l‘m“<7d+17’7d+27 --7’7D"71 7’7( )7"'7’75{(1))
We will use a method analogous to the univariate case for deter- tq—1=0,1, ..., Ng_1; d=2,3,...,D—1.
mination and evaluation of the multivariate rational interpolant. 8)
The generic equations for our multivariate rational interpolation
technique are given in the following paragraphs. The computation of the above multivariate continued fraction
N ) follows a tree-like structure and is, therefore, called a BCF. Dif-
ROy, Y25 -5 YD) = 72 - WD) (5) ferentforms of BCFs can be constructed, depending on the way

D(v1s 725 -5 D) in which the list of support points is enumerated [32]-[34]. The
BCF used here was defined by Siemaszko [35].

Similar to the univariate case, each of the BCFs of (6)—(8)
can be evaluated by using three-term recurrence relations given
in(9)ford =1, 2, ..., D — 1, initialized with

The interpolation functiof®(vy, =, - .., yp) is represented by
the convergent of a multivariate Thiele-type BCF of the form

§R(71a Y2, 0y ’YD) §R0<72a LTI ,YD‘,Y(O) )
No(Vd; Va+1, - -5 D)

. (i1—1)
Ny T ‘ — % (i) (i2) )
+Z = Jol Yd+1, Yd+2, ---> VYD|V1 5 V2 o -5 V4
: ‘ R, (@)
i1=1 i\ Y2, V35 .-+ YD1
Do(va; Y1, -5 YD)
(6) 1
Compared to the univariate continued fraction in (2), each N (v4, vay1, ..., vp)
of the constant partial denominators |s replaced with a mul- ‘
tivariate function®;, (v, ¥3, .. -, ’yD|’yl )), which has one = §R1<’yd+1, P TS ’yD"y(“), 512), . fyfil) )
less variable tham(y1, 72, - .., vp) and is defined withy,
constant and equal to{"). Each®;, (72, vs. ... vplv'™) “ No(Vdy Yat1s -5 YD) + (’Yd - 7((10)>
can, in turn, be represented by a continued fraction, where
R, (61) _(d2)y ; defined _ G d and
(] (,737 747 sy ,VD|,7 y V2 ) IS define ah/l =7 an D ( )
Yo = 727/2 1\Yds Yd+15 ---5 YD
1 iz 1
(i) :§R1<7d+177d+27"'77 ‘ (@) ’Yé )7775{)>
§R7& ,727,737"'77/7‘ '
Ni(vas Vas1s -+ -5 YD) )
- % (i1)  (0)
= Jo| V35 V45 -+ ’YD"Y » V2 (1) (iz) (k)
= Ry ’Yd+1”Yd+2a---a’YD"Y sy Y2 Ty s Vg
(i2—1)
. Y2 — Vo k—1
N i ‘ “Ni—1(Vas Va1, - Yp) + (’m — 9§ ))
ig=1 ‘ §R22<’737 Y4, ---5 YD "7(11)7 ’7522) ) 'Nk—2(’}/d, Yd41y e ’VD)
. Dk(’}/d, Yd+1, ---’,YD) 7
1120,1,...,N1. (7) . .
= §Rk Yd+1y Yd+2y +++ ’VD"V(ZI)v ’7(12)7 ey ’Y(k)
The substitution of the partial denominators by continued < ! 2 ¢
fractions is repeatedly performed according to (8). The (k—1)
. 7 % Dy ’ IR ( - )
number of variables o, (va+1, Yat2, - - -, fyD|fy£"), fy§ 2), k=1(%a; et 7p) + (7~
e ’y((l d)) decreases with every step until this function be- - Dr_2(va, vat1, -+, D) J

comes a univariate functld}ﬁm(fth(“), 7522), s 7553;1)), Ek=2,3,..., Ny
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. ] iq—1 0).
. ) (i) (ia1) evaluatmgfid(fy((l”), ’y((;d ), e ’y((i ); Yd41s V425 -+ VD)
kY ey Ydtly - YD|TL 0 T2 e Va1 Equation (10), ford = 1, 2, ..., D — 1, therefore, becomes
(12), shown at the bottom of the following page, and (11)
_ Nip(vd, Yax1s oo, YD) o
= , k=0,1,..., Ny. (9) becomes
Dy.(va, Yag1, -+ YD)
In this case, sets of support points are combined to defineeid<,yd+l7 Yarzs ooy A A5 ’V((fd) )
sets of univariate interpolation functions with — 1 variables
constant. The union of these univariate interpolation functions _ . (&) _ (Ga—1) (0), )
then generates sets of bivariate functions. Sets of bivariate func- C”(” »Td ey a5 s Va2, -5 D s
tions combine to form three-variable interpolation functions. iqg=0,1,..., Ng. (13)
The process is repeated until a multivariate interpolation func-
tion with D variables is determined. This simple procedure makes a world of difference, as the

From the above formulation, it follows that the determinatiorectangularly spaced support points required by the BCF can
of the coefficients for the multivariate interpolant is equivalentow effectively be calculated from nonrectangularly spaced
to the determination of coefficients for a set of univariate funsupport points. The following important points should be noted.
tions. These univariate functions are determined by repeatedly1) Since the number of support points for each univariate
applying the set of recurrence relations given in (10), shown at  function may be different according to (12), the orders of

the bottom of this page, fot = 1, 2, ..., D — 1. Then, the BCFs Ny, ford = 2, 3, ..., D, are now functions of
‘ ‘ ‘ their positions, i.eNé”’”z’ ~+-1) and for implementa-
§Rid<’7d+17 Yatzs s 10|, A8 L G ) tion, (7)—(9) and (12) need to be adapted.
2) Since each multivariate interpolant is the construct of a
= 5%(7((1”), ’Y((zm_l)v o ’Y((zo)% Vi1, Vb2, - -5 7D>7 set of lower dimensional interpolants, it is important to
ensure that the accuracy of these lower dimensional in-
ie=0,1,..., Nu. 11) terpolants increases as the number of variables decreases.

Note that the evaluation of (10) requires all the support points 3) The degree sets of the numerator and the denominator

; 0 @ (N1) 0y (1) (N2) polynomials are completely determined by the form of
n E{(Xl ’@31 ’ ""(1’\1,13) bxdy® et o .} A the BCF, which, in turn, is determined by the structure of
s vps - p '), as assumed at the beginning of this

the support points.
4) Different numberings of the support points produces dif-
ferent interpolants with dissimilar accuracies [17]. Inter-
polants are more accurate when the support points are
renumbered so that the orders of the BCFs decrease for
increasing branches of the BCF.

section. This constriction of a rectangular grid of support points,
which is an inherent characteristic of BCFs, is not suited for an
adaptive sampling algorithm that requires the freedom to choose
arbitrary support points in the interpolation space. Furthermore,
we expect that a number of the support points in the grid are
redundant.

An important step to enable an adaptive scheme to be applied
can now be taken. The constriction of the rectangular grid is
removed by approximating certain function values with the The multivariate rational interpolation formulation given in
previously determined interpolants for those functions wheSection IV is essentially univariate in nature. Therefore, we

V. MULTIVARIATE ADAPTIVE SAMPLING

50(’7((;); Vdt1, Y425 -« - ’YD)

S<71§Zl)’ r}éw)a AR 7((11)’ Y415 « -+ ,YD>

) 0
51(755), A0 a1y Yaros - 70)

’7((;) . ’7((10)

i=1,2 ..., Ny

?

; 0
50(’7((;); Vi1 Vg2 - oo s ’7D> - 50(7((1 ); Vd1r Y425 « oo s ’7D>

3 k—1 0
£k<7$)77§{ )7 775{ );7d+17’7d+27 "'7’7D>
] k—1
_ P
- ;
7 k—2 0 k—1 k—2 0
5k—1<’7((1)7’7((1 )777((1)77d+177d+2777D> - 5k—1<7((1 )77((1 )777((1 );7d+177d+27"'7ryD>

i=k k+1,...,Ng; k=23,..., Ny (20)
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can apply an adaptive sampling algorithm similar to that usednew support point at the maximum of this error function.
for the univariate case. Two different adaptive sampling alg&valuation of the error function in (14), with the support points
rithms are considered. The first algorithm, based on (10) aithe seriegy,”, v, ..., 7{¥*}, will determine a function
(11), determines a set of support points in the interpolatigat is zero at all of the support points, exceptyft . A
space placed on a fully filled (not equidistant) rectangular griglifferent error function can be defined, which is zero at all of
The second algorithm places support points on a nonrect@fe support points, except@f\f“_l), when the last two support
gular grid and is based on (12) and (13). The interpolatigsbints in the series are swapped around. A new error function,

space is defined ing € [v(”, 7] ford = 1,2, ..., D. At defined as the product of the square root of the above two error
initialization, an arbitrary set of point$f12) are selected in the functions, is zero at all of the support points. Although the
interval [ry((io), fy((il)]_ same method can be applied to the univariate case, this has no

An estimate of the interpolation error for the partial interbenefit.
polants of (8) is given in (14), shown at the bottom of this page. The first multivariate adaptive sampling algorithm, denoted
The function Ex(v4, Ydt1, - - -» fyD|fy£“), ,yéw)’ o fy((i’i)l) ASA1, determines the multivariate rational interpolant as shown
is only defined for the variabley, with v41, yat2, .-, vyp  in the following steps.
defining the position at which the error function can be
evaluated. To reduce the computational effort required

in evaluating (14), especially for a larger number of

Step 1) Using the univariate adaptive sampling algorithm,
determine a univariate model of each variable
over the intervaly\”, v$"], with all other variables

. i1 1o k
Yarlables, Ey(va, vat1, -, ’YD(|;;£ M C ’Y((z(;)l) set to their midpoint values, i.ex, = 7+ (v —
isonly evaluate(g) at = Ve Va2 = Tage +y /2 form =1,2,..., D andm # d. In this_
.-, Yo = 7p . Practical examples have shown that way, D univariate interpolants and their respective
Ex(vas Yag1s - - -5 ’VDM“) ’YSZZ), N ’V((fi)l) is largely in- sets of support points, each lying on a line crossing
dependent of the variableg,y1, vyat2, ..., vp, provided through the center of the interpolation space, are de-
that Rx(va, Va1, - - ’YDI%E“), ,yéw R fy((i’i)l) is accurate termined.
for all k. Due to the renumbering of the support points, as Step 2) Sort the variable positions in the multivariate inter-
mentioned in Section IV, it is necessary that an error function polant so that the orde§,; of the interpolants de-
be zero at all of the support points in order to be able to place termined in step 1) decreasedmcreases in (8).

Co(ﬁ((lz); Yd+1s Yd+25 - -+ ’7D>
= S<7£ZI)7 ’7512)7 LR ’75{1)7 Yd4+1y 0y ’7D>

] 0
G (’7((12)’ 7((1 )5 Yd41s Yd42s «« - s 'YD)

’Y((;) - 7((10)

= . i=1,2,..., Ny
G (Wéi)w‘i*l’%“"“"m) - §R0<’7d+1,’m+2,---,70‘7§i1),7§iz),...,fy((io) )
Ck(’v((ii), A A yaras Yaras - ry,)>
_ 2 Ml A
B Ck1<’V((1i)v’7((1k_2)7---77((10);’Yd+1,7d+27---7’713> - §Rk1<’7d+17’vd+2,...,’VD"Y]Eil),’yéiz),...,fy((ik_l) >’
i=k k+1,...,Ng k=23, ..., Ny 12)

Ek(’m, Yd1s - 'VDM R ’Vfﬂ)

‘%k(’ydv Yd+1s-- -5 ’VD‘,YjEil)v 7&2)7 .. 7’7((111)1 ) - §Rkl(’yda Yd+1s5-- -5 ’VD‘,YjEil)v 7&2)7 st ’7((1’:;1) ) ‘
(14)

2
<1 + ‘%k<’7d77d+17 s 7’7D‘7£i1)77§i2)7 o '775{’1)1 )‘)
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Fig. 2. lllustration of the support point placement using ASAL.
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Step 3) Generate a rectangular grid of support points fron 72

the points determined in step 1), i.e., all the points in
R R PR LD B {’V(O), ) x
R T ) B
Step 4) Determine a multivariate rational interpolant from
the grid of support points defined in step 3) using 7/2(2)
(10), (11), and (3).

We expound ASA1 by means of a bivariate example illus-
trated in Fig. 2. Step 1) of the algorithm determines the star
shaped support points by means of a univariate interpolatio
along the dimensions; and~, at~\? and~!?, respectively. o —h oo e
Since N; = 6 is smaller thanV, = 7 in the example;, a 3 ©
and~, are exchanged in the interpolant. Hence, the interpolar 71 71
R(~e2, v1) consists of a union of univariate interpolai&y, ). ()
”.‘ step 3), a grid of suppprt points is ger_1era_ted by addl.ng tEl% 3. lllustration of the support point placement using ASA2. (a) After three
circle-shaped support points, as shown in Figh®yz, v1) IS steps. (b) After the fourth step.
determined from this rectangular grid of support points.

The second multivariate adaptive sampling algorithm,

denoted ASA2, determines the multivariate rational interpola@@rithm, we completely determiri& (2 ) with a predetermined

0% 0-OO -
O %0 O

S OB - O~

@

as shown in the following steps. accuracy by placing support pointsnﬁ(?). We then determine
Step 2) Same as for ASAL. continue by determining®; (v2) at+{2. with N{? = 8, we

Step 3) Initialize a model with a rectangular grid of suprenumber the support points so that the support poirméQét
port points with three support points along evergetermineRy(~2), the support points a}éo) determineR; (y2),
dimension, i.e.3” support points in{7§0), %(;)7 the support points aﬂl) determineRz(v2) in (6) and, hence,
A {0 A A x5 A 42 4D andy® becomerY, 4P, and(?, respectively, as

Step 4) Determine a multivariate rational interpolant frorshown in Fig. 3(b). We then evaluate the error functiomfoat

the support points using (12), (13), and (3). ~? and determine/* at the maximum of this error. We ini-
Step 5) Select a dimensioyy for selection of new support tialize R5(~,) with three support points at.”, v5 and~{?,

points. Iterate for = D, D — 1, ..., 1. shown by the star-shaped support points in Fig. 3(b). Using the
Step 6) Select a new support point at the maximum of th@ivariate adaptive sampling algorithm, we completely deter-

error function aty,. _ mineRs(v2) aty!¥ . The process is repeated until the error func-
Step 7) Renumberthe support points so ftiatlecreases as tion has reached its predetermined accuracy.

d increases. If required, interval subdivision, as mentioned in Section IlI
Step 8) Repeat steps 4)-8) until convergence. for the univariate case, is applied to the variabie

We expound ASA2 by means of a bivariate example illus-
trated in Fig. 3. Steps 1) and 2) are the same as in ASALl. We
assumeV; is smaller thanV;. In step 3), an initialization grid
of nine support points is generated, as shown by the star-shapeto verify the algorithms discussed in Sections IV and V, a
support points in Fig. 3(ajk(v1, 72) is determined from these number of two- and three-dimensional models were created for
nine support points. Using the univariate adaptive sampling akandard microwave circuits. To determine the accuracy of the

VI. EXAMPLES
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TABLE |
CONVERGENCE OFR(wW/h, ¢,.) DETERMINED BY ASA1 AND ASA2 FOR THE STRIPLINE EXAMPLE

ASAL ASA2
Number of En(wih, £) [dB] Number of E,(w/h,¢,) [dB]
support points Mean Max support points Mean Max
9 -29.3 ~16.4 9 -29.3 -16.4
16 -40.4 -259 14 -33.0 -185
24 -42.4 -30.0 21 -424 -29.1
36 -74.5 —-58.8 29 -72.3 —56.9

Fig. 4. Cross-sectional view of the stripline.

models, they have to be evaluated on an independent evaluatir
data set, similar to the validation procedures applied to neur¢
networks. In the following examples, the relative squared erro
E,, between the function and the model on & 8Quispaced
grid for the bivariate cases and on & 2@uispaced grid for the
trivariate cases was calculated. In all cases, both the maximuin
and average errors in decibels are shown for models of varyiag 5 asa2: stripline example. Response®fwih, =,) with 29 support
size. None of these models were reduced in size after a fit wasts.
obtained, in contrast to techniques where the order of the in-
terpolant is guessed beforehand, and the interpolation functia
(calculated by a high number of CEM analyses) is systemati

cally reduced afterwards. 05

A. Stripline Characteristic Impedance—Two Variables

A bivariate model®R(w/h, £.) was determined with the
adaptive sampling algorithm for the characteristic impedalnc'éi 604
Zo(wih, ¢,.) of a homogeneous symmetric stripline, as shown &_-so+,
in Fig. 4. The variables are the strip width-to-height (w/h) = ;4.
ratio and the relative dielectric constat of the substrate.
The strip conductor was assumed infinitesimally thin, thus
Zo(wih, e,.) can be computed using the exact formula, which
is derived using a conformal transformation [36]. The model is
determined for the parameters w¢h0.05, 1] ande,- € [1, 25],
which define the interpolation space. At initialization, the nine wih
chosen support points produg&w/h, ¢,.) with the maximum
error equal to-16.4 dB. Table | shows the convergence of thgig 6. aAsa2: stripline examples,,. (wih, «,.) of R(wih, &,) with 29 support
models using ASA1 and ASA2 as the number of support poinsints.
increase. With equivalent accuracies5/ dB), the model
determined by ASA2 required seven less support points thsion coefficients, i.e.511(f, &) and Sa1(f, k), and S11(f, 1)
ASAL. The response of the interpolation modeiw/h, €,.) andS,;(f, 1), of a capacitive step in a rectangular waveguide, as
with 29 support points determined with ASA2 and its relativehown in Fig. 7. The variables are frequerfcgnd gap height,
squared errok,,,(w/h, «,.), which is less than-56 dB in the and frequency and gap lengtt. The models were determined
interpolation space, are shown in Figs. 5 and 6, respectively.for a standard WR90 rectangular waveguide. The capacitive step

N ) ) _was analyzed using the mode-matching method combined with
B. Capacitive Step in Rectangular Waveguide—Two Variablgs, generalized scattering matrix [37]. The modBis (f, /)

Bivariate modelsRi;(f, h) and Ro1(f, h), andRy1(f, 1) andRz1(f, h) are determined witlf € [7 GHz, 13 GHZ, h €

and¥®y; (£, 1), were determined for the reflection and transmig2 mm, 8 mm| and! = 2 mm. Tables Il and 1l show the con-

-120d
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TABLE I
CONVERGENCE OFRy 1 (f, h) DETERMINED BY ASA1 AND ASA2 FOR THE CAPACITIVE STEP EXAMPLE

ASALl ASA2
Number of Eu(f, h) [dB] Number of Eu(f, h) [dB]
support points Mean Max support points Mean Max
12 -34.4 -20.3 15 -52.5 -35.4
16 -54.5 —45.7 20 -61.4 -44.9
20 -57.5 —45.0 22 -62.5 —48.2
30 -68.2 -50.5 37 -76.2 -51.1
42 —-81.0 -70.1 44 -93.2 -82.3
TABLE Il
CONVERGENCE OFRz1( f, h) DETERMINED BY ASAL AND ASA2 FOR THE CAPACITIVE STEP EXAMPLE
ASA1l ASA2
Number of Ex(f, b) [dB] Number of Ex(f, h) [dB]
support points Mean Max support points Mean Max
12 -51.3 -38.0 13 -52.3 -44.8
15 =523 -38.0 18 -61.8 -51.9
25 -65.3 -53.6 22 ~64.6 -28.4
35 -82.2 -61.2 37 -91.5 -71.3
42 -90.1 -78.5 44 -94.1 —80.7
TABLE IV

CONVERGENCE OFR11(f, 1) AND R21(f, 1) DETERMINED BY ASA2 FOR THE CAPACITIVE STEP EXAMPLE

Ru(f, ) Ra(f, /)
Number of £, D [dB] Number of Ealf, 1) [dB]
support points Mean Max support points Mean Max
12 -42.3 =221 12 ~54.8 -38.0
17 -57.1 -40.2 16 -56.7 -36.2
21 -61.1 -50.7 19 —65.6 -51.8
45 -82.5 —63.8 42 —-89.3 —71.1

b Eh § b
\
S . LN |
!: ,! I(—)l )
a I a
Fig. 7. Cross-sectional view and side view of the capacitive step.
\J id S
vergence of the models using ASA1 and ASA2 as the number of
support points increase. The mod#ls ( f, [) andRy (f, 1) are
determined withf € [7 GHz, 13 GHZ], [ € [0.5 mm, 5 mm| l(—w>|

andh = 5 mm. Table IV shows the convergence of the models

using ASA2 as the number of support points increase. With &ig. 8. Cross-sectional view and top view of the inductive posts.

equivalent number of support points, the errors of the models

determined by ASA2 tend to be less by up to 10 dB comparéstmined for a standard WR90 rectangular waveguide yith

to those determined by ASAL. [7 GHz, 13 GHZ] andw € [4 mm, 18 mm|. A moment-method
technique is used to analyze this structure [38]. Tables V and VI

C. Inductive Posts in Rectangular Waveguide—Two Variableshow the convergence of the mod#is; (£, w) andRa, (f, w)

Bivariate modelsR; 1 (f, w) andRy, (f, w) were determined using ASA1 and ASA2 as the number of support points increase.

for the reflection and transmission coefficients, i®. (f, w) N ) )

and S (£, w), of two perfectly conducting round posts cenD- Capacitive Step in Rectangular Waveguide—Three
tered in theE-plane of a rectangular waveguide, as shown iariables

Fig. 8. The variables are frequengyand post-spacing:. The A trivariate model®,1(f, h, [) was determined for the re-
diameter of the posigwas setto 2 mm and the model was deflection coefficient, i.e.,S11(f, h, [) of a capacitive step in a
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TABLE V
CONVERGENCE OFRy:( f, w) DETERMINED BY ASA1 AND ASA2 FOR THEINDUCTIVE POSTSEXAMPLE

ASALl ASA2
Number of En(f, w) [dB] Number of Eu(f, w) [dB]
support points Mean Max support points Mean Max
18 -32.4 -16.8 18 -38.1 -23.7
36 ~39.8 -13.8 28 -67.2 —49.2
48 —-88.4 -73.8 53 -91.5 -73.7
TABLE VI

CONVERGENCE OFRz1( f, w) DETERMINED BY ASA1 AND ASA2 FOR THEINDUCTIVE POSTSEXAMPLE

ASALl ASA2
Number of Ex(, w) [dB] Number of Ex(f, w) [dB]
support points Mean Max support points Mean Max
18 -38.1 -25.1 23 -59.1 ~-41.6
36 -39.6 -9.2 30 =52.1 -27.4
48 -89.8 -68.6 51 -76.8 -51.3
56 -90.4 —64.9 57 —87.9 -72.5
TABLE VIl

CONVERGENCE OFR11(f, h, I) DETERMINED BY ASA1 FOR THE CAPACITIVE STEP EXAMPLE

f e [8 GHz, 12 GHz], f € {7 GHz, 13 GHz],

h € [3 mm, 7 mm], h e [2 mm, 8 mm],

! € [1 mm, 4 mm] [ € [0.5 mm, 5 mm]

Number of Eu(f, b, /) [dB] Number of Eu(f, b, ) [dB]
support points Mean Max support points Mean Max
64 -65.1 —49.5 150 —-56.6 -31.1
180 -82.2 -55.5 294 -62.0 -30.1
294 -85.3 -59.5 576 -59.3 -15.1
512 -100.8 -63.1 1300 -81.0 -32.1
832 -108.2 -76.6 1716 -83.2 -35.0
936 -109.3 —96.8 2730 ~70.0 -26.7
TABLE VilI

CONVERGENCE OFR11(f, h, ) DETERMINED BY ASA2 FOR THE CAPACITIVE STEP EXAMPLE

f € [8 GHz, 12 GHZz], f e [7 GHz, 13 GHz],

h € [3 mm, 7 mm]j, h € [2 mm, 8 mm],

! € [1 mm, 4 mm] ! € {0.5 mm, 5 mm]

Number of Eu(f, h, ) [dB] Number of Eu(f, b, ) [dB]

support points Mean Max support points Mean Max
115 -70.7 -21.9 343 —55.5 -15.3
164 -75.5 —46.7 593 —67.0 -31.4
300 —-86.6 -57.8 737 -76.5 -40.0
379 -89.9 -75.8 871 -79.5 -47.0
496 -107.3 ~86.0 1375 -91.7 -47.7
645 -108.3 —94.4 1758 —96.1 ~54.7
917 -109.1 —97.5 2142 —97.2 -58.1

rectangular waveguide, as shown in Fig. 7. The variables dras a faster convergence than ASAL. For the larger interpolation
frequencyf, gap height, and step length The model was de- space, ASAL failed to produce a model with good accuracy due
termined for a standard WR90 rectangular waveguide. The tathe nonoptimal placement of the support points, while ASA2
pacitive step is analyzed using the mode-matching method [3&@¢hieved an error of smaller tharb8 dB with 2142 support
Two sets of models were determined with different interpolatiguoints.

spaces, i.ef € [8 GHz, 12 GHZ, A € [3 mm, 7 mm)|, and! €
[L mm, 4 mm|, andf € [7 GHz, 13 GHZ], h € [2 mm, 8 mm|,
andl € [0.5 mm, 5 mm|. Tables VIl and VIl show the results A trivariate model R (£, a, b) was determined for the
using ASA1 and ASA2, respectively. For the smaller interpolaransmission coefficient, i.e.So1(f, a, b) of an iris in a
tion space, the models determined by ASA1 and ASA2 attain ggctangular waveguide, as shown in Fig. 9. The variables
error smaller thar-95 dB with about 920 support points. ASA2are frequencyf, gap widtha, and gap height. The model

E. Iris in Rectangular Waveguide—Three Variables
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(1]
[2]
[3]
Fig. 9. lIris in rectangular waveguide.
[4]
TABLE IX
CONVERGENCE OFRz:1 (f, a, b) DETERMINED BY ASAL FOR THE
IRIS EXAMPLE [5]
Number of Eu(f, a, b) [dB]
support points __ Mean Max (6]
252 -37.9 -36
1120 —46.2 -74
1440 —44.3 -1.5 [71
TABLE X (8]
CONVERGENCE OFRz: (f, a, b) DETERMINED BY ASA2 FOR THE
IRIS EXAMPLE
[
Number of Ex(f, a, b) [dB]
support points Mean Max [10]
168 -50.0 -18.0
247 -56.9 -19.5
328 -63.2 -31.1
560 —66.5 -33.1 [11]
736 -72.7 -52.6
[12]

was determined for a standard WR90 rectangular wave-
guide with f € [8GHz 12GHZ, a € [8 mm, 15 mm|, [13]
b € [1 mm, 3mm|, andl = 1 mm. The iris is analyzed using
the mode-matching method [37]. Tables IX and X show the[14]
results using ASA1 and ASA2. ASA1 failed to produce a
model with good accuracy due to the nonoptimal placement gfi5]
the support points, while ASA2 achieved an error of smaller
than—52 dB with 736 support points. [16]

[17]
VIl. CONCLUSION

An adaptive sampling algorithm for multivariate rational in- el
terpolation based on the Thiele-type BCF has been presented.
Support points have been selected efficiently to create acclt
rate mathematical models for the microwave circuits consid-
ered. Errors of smaller than 0.25% in the interpolation space
were achieved in all cases. The algorithm is fully automatic an&zo]
does not require arg/priori knowledge of the microwave struc-
ture under study. It does not require derivatives, is widely appli—2
cable, and is in no way restricted to the specific examples shown
here.
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